Skip navigation

Chemical Fatty Acids, Monounsaturated

1–50 of 549 results.
  Chemical Phenotype Co-Mentioned Terms Interaction Organisms Anatomy Inference Network References
1. 10-nitro-oleic acid negative regulation of cell proliferation 10-nitro-oleic acid results in increased negative regulation of cell proliferation 1: Homo sapiens Mammary Glands, Human | Cell Line, Tumor
5 genes: CAV1 | CDKN1A | HMOX1 | PTGS2 | TNF
1
2. 10-nitro-oleic acid mitotic cell cycle arrest 10-nitro-oleic acid results in increased mitotic cell cycle arrest 1: Homo sapiens Mammary Glands, Human | Cell Line, Tumor 1 gene: CDKN1A 1
3. 10-nitro-oleic acid glutathione metabolic process 10-nitro-oleic acid results in increased glutathione metabolic process 1: Homo sapiens Mammary Glands, Human | Cell Line, Tumor
2 genes: GSTA3 | GSTA4
1
4. 10-nitro-oleic acid glutathione metabolic process Glutathione [10-nitro-oleic acid results in increased glutathione metabolic process] which results in decreased abundance of Glutathione 1: Homo sapiens Mammary Glands, Human | Cell Line, Tumor
2 genes: GSTA3 | GSTA4
1
5. 10-nitro-oleic acid glutathione metabolic process Glutathione Disulfide [10-nitro-oleic acid results in increased glutathione metabolic process] which results in increased abundance of Glutathione Disulfide 1: Homo sapiens Mammary Glands, Human | Cell Line, Tumor
2 genes: GSTA3 | GSTA4
1
6. 10-nitro-oleic acid negative regulation of cell migration 10-nitro-oleic acid results in increased negative regulation of cell migration 1: Homo sapiens Mammary Glands, Human | Cell Line, Tumor   1
7. 10-nitro-oleic acid positive regulation of cell proliferation TNF 10-nitro-oleic acid inhibits the reaction [TNF protein results in increased positive regulation of cell proliferation] 1: Homo sapiens Mammary Glands, Human | Cell Line, Tumor
11 genes: AKT1 | ALDH3A1 | BCL2L1 | CCND1 | EGFR | IKBKB | MAPK1 | PLAU | PTGS2 | RELA | TNF
1
8. 10-nitro-oleic acid positive regulation of NF-kappaB transcription factor activity TNF 10-nitro-oleic acid inhibits the reaction [TNF protein results in increased positive regulation of NF-kappaB transcription factor activity] 1: Homo sapiens Mammary Glands, Human | Cell Line, Tumor
5 genes: CHUK | ICAM1 | IKBKB | RELA | TNF
1
9. 10-nitro-oleic acid negative regulation of cell proliferation Probenecid Probenecid promotes the reaction [10-nitro-oleic acid results in increased negative regulation of cell proliferation] 1: Homo sapiens Mammary Glands, Human | Epithelial Cells | Cell Line
5 genes: CAV1 | CDKN1A | HMOX1 | PTGS2 | TNF
1
10. 11-deoxyprostaglandin E1 vasodilation 11-deoxyprostaglandin E1 results in increased vasodilation 1: Rattus norvegicus Kidney 1 gene: NOS3 1
11. 11-deoxyprostaglandin E1 cell chemotaxis 11-deoxyprostaglandin E1 results in decreased cell chemotaxis 1: Homo sapiens Neutrophils   1
12. 11-deoxyprostaglandin E1 histamine secretion mediated by immunoglobulin 11-deoxyprostaglandin E1 results in increased histamine secretion mediated by immunoglobulin 1: Homo sapiens Blood | Mast Cells   1
13. 11-octadecenoic acid regulation of fatty acid metabolic process beta-hexachlorocyclohexane [beta-hexachlorocyclohexane affects regulation of fatty acid metabolic process] which results in increased abundance of 11-octadecenoic acid 1: Mus musculus Liver   1
14. 11-octadecenoic acid regulation of fatty acid metabolic process Dichlorodiphenyl Dichloroethylene [Dichlorodiphenyl Dichloroethylene affects regulation of fatty acid metabolic process] which results in increased abundance of 11-octadecenoic acid 1: Mus musculus Liver   1
15. 12-ketooleic acid membrane lipid catabolic process 12-ketooleic acid results in increased membrane lipid catabolic process 1: Mus musculus Liver | Subcellular Fractions   1
16. 13,14-dihydroprostaglandin E1 regulation of organ growth 13,14-dihydroprostaglandin E1 results in increased regulation of organ growth 1: Rattus norvegicus Lung   1
17. 13,14-dihydroprostaglandin E1 vasodilation 13,14-dihydroprostaglandin E1 affects vasodilation 1: Rattus norvegicus Lung   1
18. 13-octadecenoic acid regulation of fatty acid metabolic process lard [lard affects regulation of fatty acid metabolic process] which results in increased abundance of 13-octadecenoic acid 1: Rattus norvegicus Mammary Glands, Animal   1
19. 15(S)-15-methylprostaglandin E1 regulation of membrane potential N-Formylmethionine Leucyl-Phenylalanine 15(S)-15-methylprostaglandin E1 inhibits the reaction [N-Formylmethionine Leucyl-Phenylalanine results in increased regulation of membrane potential] 1: Rattus norvegicus Neutrophils   1
20. 2-hydroxyoleic acid cell death Gentamicins 2-hydroxyoleic acid inhibits the reaction [Gentamicins results in increased cell death] 1: Rattus norvegicus Cochlea | Hair Cells, Auditory   1
21. 9-tetradecenoic acid regulation of fatty acid metabolic process lard [lard affects regulation of fatty acid metabolic process] which results in increased abundance of 9-tetradecenoic acid 1: Rattus norvegicus Mammary Glands, Animal   1
22. butaprost ion transport butaprost results in increased ion transport 1: Canis lupus familiaris Kidney | Epithelial Cells | Cell Line   1
23. butaprost apoptotic process butaprost results in increased apoptotic process Hippocampus | Neurons
6 genes: BIRC5 | CASP1 | CASP3 | HMOX1 | IL1B | TNF
1
24. butaprost apoptotic process Cyclic AMP [butaprost results in increased apoptotic process] which results in increased abundance of Cyclic AMP Hippocampus | Neurons
6 genes: BIRC5 | CASP1 | CASP3 | HMOX1 | IL1B | TNF
1
25. butaprost cell death butaprost affects cell death 1: Rattus norvegicus Cerebral Cortex | Cells, Cultured 1 gene: HMOX1 1
26. butaprost cell death Cyclic AMP [butaprost affects cell death] which results in increased abundance of Cyclic AMP 1: Rattus norvegicus Cerebral Cortex | Cells, Cultured 1 gene: HMOX1 1
27. butaprost cell proliferation butaprost results in decreased cell proliferation T-Lymphocytes, Regulatory
3 genes: EGFR | STAT3 | TNF
1
28. butaprost cell proliferation 6-isopropoxy-9-oxoxanthene-2-carboxylic acid 6-isopropoxy-9-oxoxanthene-2-carboxylic acid inhibits the reaction [butaprost results in decreased cell proliferation] T-Lymphocytes, Regulatory
3 genes: EGFR | STAT3 | TNF
1
29. butaprost cell chemotaxis butaprost results in decreased cell chemotaxis 1: Homo sapiens Neutrophils   1
30. butaprost histamine secretion mediated by immunoglobulin butaprost results in decreased histamine secretion mediated by immunoglobulin 1: Homo sapiens Lung | Mast Cells   1
31. butaprost histamine secretion mediated by immunoglobulin Dinoprostone butaprost inhibits the reaction [Dinoprostone results in decreased histamine secretion mediated by immunoglobulin] 1: Homo sapiens Lung | Mast Cells   1
32. butaprost positive regulation of cell death Hemin butaprost inhibits the reaction [Hemin results in increased positive regulation of cell death] 1: Mus musculus Cerebral Cortex | Neurons | Cells, Cultured
2 genes: IL1B | PTGS2
1
33. butaprost cell death butaprost results in increased cell death 1: Rattus norvegicus Microglia | Cells, Cultured 1 gene: HMOX1 1
34. butaprost cell death TG4-155 TG4-155 inhibits the reaction [butaprost results in increased cell death] 1: Rattus norvegicus Microglia | Cells, Cultured 1 gene: HMOX1 1
35. butaprost cell death Butylated Hydroxyanisole Butylated Hydroxyanisole inhibits the reaction [butaprost results in increased cell death] 1: Rattus norvegicus Microglia | Cells, Cultured 1 gene: HMOX1 1
36. butaprost cell death tryptophyl-glutamyl-histidyl-aspartic acid tryptophyl-glutamyl-histidyl-aspartic acid analog inhibits the reaction [butaprost results in increased cell death] 1: Rattus norvegicus Microglia | Cells, Cultured 1 gene: HMOX1 1
37. butaprost cAMP biosynthetic process butaprost results in increased cAMP biosynthetic process 1: Homo sapiens Lung | Cell Line   1
38. Capsaicin vasoconstriction Norepinephrine Capsaicin promotes the reaction [Norepinephrine results in increased vasoconstriction] 1: Rattus norvegicus Mesenteric Arteries
5 genes: AGTR1A | BDKRB2 | EDN1 | HTR1B | HTR1D
1
39. Capsaicin electron transport chain Capsaicin results in decreased electron transport chain Cell Line, Transformed | Cell Membrane
8 genes: AKR1A1 | AKR7A3 | CYBB | CYP1A2 | ETFA | GSR | NQO2 | POR
1
40. Capsaicin response to oxidative stress Capsaicin results in increased response to oxidative stress 1: Homo sapiens Jurkat Cells
30 genes: ABL1 | AIFM1 | AKT1 | APOE | BCL2 | BCL2L1 | CAT | DDIT3 | EGFR | GPX1 | GPX4 | GSR | GSTS1 | HMOX1 | MAP2K1 | MMP14 | MMP2 | MMP9 | MPO | NDUFB4 | NFKB1 | NQO1 | PRDX1 | PRDX6 | PRKCD | PTGS2 | SOD2 | TLR4 | TP53 | TRP53
1
41. Capsaicin regulation of mitochondrial membrane potential Capsaicin results in decreased regulation of mitochondrial membrane potential 1: Homo sapiens Jurkat Cells
6 genes: BAK1 | BAX | BCL2 | BCL2L1 | SOD2 | UCP2
1
42. Capsaicin regulation of mitochondrial membrane potential Cyclosporine Cyclosporine inhibits the reaction [Capsaicin results in decreased regulation of mitochondrial membrane potential] 1: Homo sapiens Jurkat Cells
6 genes: BAK1 | BAX | BCL2 | BCL2L1 | SOD2 | UCP2
1
43. Capsaicin regulation of mitochondrial membrane potential Acetylcysteine Acetylcysteine inhibits the reaction [Capsaicin results in decreased regulation of mitochondrial membrane potential] 1: Homo sapiens Jurkat Cells
6 genes: BAK1 | BAX | BCL2 | BCL2L1 | SOD2 | UCP2
1
44. Capsaicin apoptotic process Cyclosporine Cyclosporine inhibits the reaction [Capsaicin results in increased apoptotic process] 1: Homo sapiens Jurkat Cells
91 genes: ABL1 | AHR | AIFM1 | AKT1 | APAF1 | ATG5 | ATM | BAD | BAG3 | BAK1 | BAX | BCL10 | BCL2 | BCL2L1 | BCLAF1 | BECN1 | BID | BIRC2 | BIRC5 | BIRC8 | BNIP2 | BNIP3 | BNIP3L | CASP2 | CASP3 | CASP4 | CASP6 | CASP7 | CASP8 | CASP9 | CCK | CDK1 | CDKN2A | CFLAR | CHEK2 | CSNK2A1 | CXCR4 | DDIT3 | DFFA | E2F1 | ERN1 | FADD | FAM162A | FAS | FASLG | GADD45A | GAPDH | GH | GJB6 | GPX1 | GZMA | HIP1R | HMOX1 | HRAS | IFNG | IL1A | IL1B | LGALS1 | MAP3K7 | MAPK1 | MAPK14 | MAPK3 | MCL1 | NFKB1 | NFKBIA | NGFR | PARP1 | POLB | PPARD | PRKCA | PRKCD | PRKCE | PRKD1 | RB1 | RBM5 | RIPK2 | RPS6KA3 | RPS6KB1 | SH3KBP1 | STEAP3 | TNF | TNFRSF10A | TNFRSF10B | TNFRSF19 | TNFRSF1A | TNFRSF25 | TNFSF10 | TP53 | TRAF3 | TRAF4 | TRP53
1
45. Capsaicin apoptotic process Capsaicin results in increased apoptotic process 1: Homo sapiens Jurkat Cells
91 genes: ABL1 | AHR | AIFM1 | AKT1 | APAF1 | ATG5 | ATM | BAD | BAG3 | BAK1 | BAX | BCL10 | BCL2 | BCL2L1 | BCLAF1 | BECN1 | BID | BIRC2 | BIRC5 | BIRC8 | BNIP2 | BNIP3 | BNIP3L | CASP2 | CASP3 | CASP4 | CASP6 | CASP7 | CASP8 | CASP9 | CCK | CDK1 | CDKN2A | CFLAR | CHEK2 | CSNK2A1 | CXCR4 | DDIT3 | DFFA | E2F1 | ERN1 | FADD | FAM162A | FAS | FASLG | GADD45A | GAPDH | GH | GJB6 | GPX1 | GZMA | HIP1R | HMOX1 | HRAS | IFNG | IL1A | IL1B | LGALS1 | MAP3K7 | MAPK1 | MAPK14 | MAPK3 | MCL1 | NFKB1 | NFKBIA | NGFR | PARP1 | POLB | PPARD | PRKCA | PRKCD | PRKCE | PRKD1 | RB1 | RBM5 | RIPK2 | RPS6KA3 | RPS6KB1 | SH3KBP1 | STEAP3 | TNF | TNFRSF10A | TNFRSF10B | TNFRSF19 | TNFRSF1A | TNFRSF25 | TNFSF10 | TP53 | TRAF3 | TRAF4 | TRP53
1
46. Capsaicin response to oxidative stress Capsaicin results in increased response to oxidative stress 1: Homo sapiens T-Lymphocytes | Cell Line, Tumor
30 genes: ABL1 | AIFM1 | AKT1 | APOE | BCL2 | BCL2L1 | CAT | DDIT3 | EGFR | GPX1 | GPX4 | GSR | GSTS1 | HMOX1 | MAP2K1 | MMP14 | MMP2 | MMP9 | MPO | NDUFB4 | NFKB1 | NQO1 | PRDX1 | PRDX6 | PRKCD | PTGS2 | SOD2 | TLR4 | TP53 | TRP53
1
47. Capsaicin regulation of mitochondrial membrane potential Capsaicin results in decreased regulation of mitochondrial membrane potential 1: Homo sapiens T-Lymphocytes | Cell Line, Tumor
6 genes: BAK1 | BAX | BCL2 | BCL2L1 | SOD2 | UCP2
1
48. Capsaicin apoptotic process Capsaicin results in increased apoptotic process 1: Homo sapiens T-Lymphocytes | Cell Line, Tumor
91 genes: ABL1 | AHR | AIFM1 | AKT1 | APAF1 | ATG5 | ATM | BAD | BAG3 | BAK1 | BAX | BCL10 | BCL2 | BCL2L1 | BCLAF1 | BECN1 | BID | BIRC2 | BIRC5 | BIRC8 | BNIP2 | BNIP3 | BNIP3L | CASP2 | CASP3 | CASP4 | CASP6 | CASP7 | CASP8 | CASP9 | CCK | CDK1 | CDKN2A | CFLAR | CHEK2 | CSNK2A1 | CXCR4 | DDIT3 | DFFA | E2F1 | ERN1 | FADD | FAM162A | FAS | FASLG | GADD45A | GAPDH | GH | GJB6 | GPX1 | GZMA | HIP1R | HMOX1 | HRAS | IFNG | IL1A | IL1B | LGALS1 | MAP3K7 | MAPK1 | MAPK14 | MAPK3 | MCL1 | NFKB1 | NFKBIA | NGFR | PARP1 | POLB | PPARD | PRKCA | PRKCD | PRKCE | PRKD1 | RB1 | RBM5 | RIPK2 | RPS6KA3 | RPS6KB1 | SH3KBP1 | STEAP3 | TNF | TNFRSF10A | TNFRSF10B | TNFRSF19 | TNFRSF1A | TNFRSF25 | TNFSF10 | TP53 | TRAF3 | TRAF4 | TRP53
1
49. Capsaicin regulation of mitochondrial membrane potential BCL2 BCL2 protein inhibits the reaction [Capsaicin results in decreased regulation of mitochondrial membrane potential] 1: Homo sapiens T-Lymphocytes | Cell Line, Tumor
6 genes: BAK1 | BAX | BCL2 | BCL2L1 | SOD2 | UCP2
1
50. Capsaicin apoptotic process BCL2 BCL2 protein inhibits the reaction [Capsaicin results in increased apoptotic process] 1: Homo sapiens T-Lymphocytes | Cell Line, Tumor
91 genes: ABL1 | AHR | AIFM1 | AKT1 | APAF1 | ATG5 | ATM | BAD | BAG3 | BAK1 | BAX | BCL10 | BCL2 | BCL2L1 | BCLAF1 | BECN1 | BID | BIRC2 | BIRC5 | BIRC8 | BNIP2 | BNIP3 | BNIP3L | CASP2 | CASP3 | CASP4 | CASP6 | CASP7 | CASP8 | CASP9 | CCK | CDK1 | CDKN2A | CFLAR | CHEK2 | CSNK2A1 | CXCR4 | DDIT3 | DFFA | E2F1 | ERN1 | FADD | FAM162A | FAS | FASLG | GADD45A | GAPDH | GH | GJB6 | GPX1 | GZMA | HIP1R | HMOX1 | HRAS | IFNG | IL1A | IL1B | LGALS1 | MAP3K7 | MAPK1 | MAPK14 | MAPK3 | MCL1 | NFKB1 | NFKBIA | NGFR | PARP1 | POLB | PPARD | PRKCA | PRKCD | PRKCE | PRKD1 | RB1 | RBM5 | RIPK2 | RPS6KA3 | RPS6KB1 | SH3KBP1 | STEAP3 | TNF | TNFRSF10A | TNFRSF10B | TNFRSF19 | TNFRSF1A | TNFRSF25 | TNFSF10 | TP53 | TRAF3 | TRAF4 | TRP53
1
1–50 of 549 results.