Skip navigation

Chemical Propylene Glycols

1–50 of 117 results.
  Chemical Phenotype Co-Mentioned Terms Interaction Organisms Anatomy Inference Network References
1. 1,3-dichloro-2-propanol triglyceride homeostasis 1,3-dichloro-2-propanol affects triglyceride homeostasis 1: Mus musculus Serum   1
2. 1,3-dichloro-2-propanol positive regulation of apoptotic process 1,3-dichloro-2-propanol results in increased positive regulation of apoptotic process 1: Rattus norvegicus Liver
4 genes: CASP3 | HMOX1 | MAPK8 | MAPK9
1
3. 1,3-dichloro-2-propanol cell proliferation 1,3-dichloro-2-propanol results in decreased cell proliferation 1: Rattus norvegicus Leydig Cells | Cell Line   1
4. 1,3-dichloro-2-propanol cholesterol homeostasis 1,3-dichloro-2-propanol affects cholesterol homeostasis 1: Mus musculus Liver   1
5. 1,3-dichloro-2-propanol positive regulation of ERK1 and ERK2 cascade 1,3-dichloro-2-propanol results in increased positive regulation of ERK1 and ERK2 cascade 1: Rattus norvegicus Liver
3 genes: CD36 | HMGCR | MAPK3
1
6. 1,3-dichloro-2-propanol glutathione metabolic process Glutathione [1,3-dichloro-2-propanol affects glutathione metabolic process] which results in decreased abundance of Glutathione 1: Rattus norvegicus Liver
3 genes: GCLC | GCLM | GSR
1
7. 1,3-dichloro-2-propanol positive regulation of cellular extravasation 1,3-dichloro-2-propanol results in increased positive regulation of cellular extravasation 1: Rattus norvegicus Liver   1
8. 1,3-dichloro-2-propanol lipid oxidation 1,3-dichloro-2-propanol results in increased lipid oxidation 1: Rattus norvegicus Liver   1
9. 1,3-dichloro-2-propanol glutathione metabolic process 1,3-dichloro-2-propanol affects glutathione metabolic process 1: Rattus norvegicus Liver
3 genes: GCLC | GCLM | GSR
1
10. 1,3-dichloro-2-propanol positive regulation of JNK cascade 1,3-dichloro-2-propanol results in increased positive regulation of JNK cascade 1: Rattus norvegicus Liver   1
11. 1,3-dichloro-2-propanol lipid oxidation Malondialdehyde [1,3-dichloro-2-propanol results in increased lipid oxidation] which results in increased abundance of Malondialdehyde 1: Rattus norvegicus Liver   1
12. 1,3-dichloro-2-propanol cAMP biosynthetic process 1,3-dichloro-2-propanol results in decreased cAMP biosynthetic process 1: Rattus norvegicus Leydig Cells | Cell Line   1
13. 1,3-dichloro-2-propanol positive regulation of p38MAPK cascade 1,3-dichloro-2-propanol results in increased positive regulation of p38MAPK cascade 1: Rattus norvegicus Liver   1
14. 1,3-dichloro-2-propanol DNA damage response, detection of DNA damage 1,3-dichloro-2-propanol results in increased DNA damage response, detection of DNA damage 1: Rattus norvegicus Leydig Cells | Cell Line   1
15. 1,3-dichloro-2-propanol glutathione derivative biosynthetic process 1,3-dichloro-2-propanol results in decreased glutathione derivative biosynthetic process 1: Rattus norvegicus Liver   1
16. 1,3-dichloro-2-propanol reactive oxygen species metabolic process 1,3-dichloro-2-propanol results in increased reactive oxygen species metabolic process 1: Rattus norvegicus Leydig Cells | Cell Line 1 gene: CAT 1
17. 1,3-dichloro-2-propanol cholesterol homeostasis 1,3-dichloro-2-propanol affects cholesterol homeostasis 1: Mus musculus Serum   1
18. 1,3-dichloro-2-propanol triglyceride homeostasis 1,3-dichloro-2-propanol affects triglyceride homeostasis 1: Mus musculus Liver   1
19. 1,3-dichloro-2-propanol regulation of signal transduction 1,3-dichloro-2-propanol affects regulation of signal transduction 1: Mus musculus     1
20. 1,3-dichloro-2-propanol apoptotic process 1,3-dichloro-2-propanol results in increased apoptotic process 1: Rattus norvegicus Leydig Cells | Cell Line
4 genes: CASP3 | HMOX1 | MAPK1 | MAPK3
1
21. 1,3-dichloro-2-propanol regulation of mitochondrial membrane potential 1,3-dichloro-2-propanol affects regulation of mitochondrial membrane potential 1: Rattus norvegicus Leydig Cells | Cell Line   1
22. 1,3-dichloro-2-propanol regulation of cAMP-dependent protein kinase activity 1,3-dichloro-2-propanol affects regulation of cAMP-dependent protein kinase activity 1: Mus musculus     1
23. alpha-Chlorohydrin positive regulation of cell proliferation alpha-Chlorohydrin results in decreased positive regulation of cell proliferation 1: Homo sapiens HEK293 Cells
51 genes: AVPR1A | BCL2 | CALR | CAPN1 | CD38 | CDC25B | COX17 | CST3 | EGFR | ENPP2 | ERBB4 | ESM1 | F2R | FASLG | FOLR2 | HSP90AA1 | ID2 | ID3 | IGF1 | IGF1R | IL12RB2 | IL18 | IL1B | IL4 | IL6 | IL6R | INSR | JAK2 | KLK1 | LEP | LGALS3 | LRP5 | LTA | MYC | OSR2 | PDGFRA | PLAC8 | PRDX3 | PTGFR | PTH1R | RAC2 | ROMO1 | RRM2 | RUNX2 | SOX9 | TFAP2B | TGFB3 | TNF | TNFSF13 | TNS3 | XBP1
1
24. alpha-Chlorohydrin cell death alpha-Chlorohydrin results in increased cell death 1: Rattus norvegicus Inferior Colliculi | Astrocytes   1
25. alpha-Chlorohydrin positive regulation of ATP biosynthetic process alpha-Chlorohydrin results in decreased positive regulation of ATP biosynthetic process 1: Homo sapiens HEK293 Cells
2 genes: ENO1 | MYC
1
26. alpha-Chlorohydrin positive regulation of release of cytochrome c from mitochondria alpha-Chlorohydrin results in increased positive regulation of release of cytochrome c from mitochondria 1: Homo sapiens HEK293 Cells
6 genes: BAX | BID | BIK | FAS | PYCARD | TP53
1
27. alpha-Chlorohydrin positive regulation of intrinsic apoptotic signaling pathway alpha-Chlorohydrin results in increased positive regulation of intrinsic apoptotic signaling pathway 1: Homo sapiens HEK293 Cells
6 genes: BAX | BCL2 | BID | IL20RA | RACK1 | TP53
1
28. alpha-Chlorohydrin apoptotic nuclear changes alpha-Chlorohydrin results in increased apoptotic nuclear changes 1: Homo sapiens HEK293 Cells 1 gene: CD24 1
29. alpha-Chlorohydrin positive regulation of cell death alpha-Chlorohydrin results in increased positive regulation of cell death 1: Rattus norvegicus Inferior Colliculi | Microglia
10 genes: AIFM1 | CD36 | DUSP6 | EGR1 | FAS | GZMB | HP | IL1B | LRP1 | PHB
1
30. alpha-Chlorohydrin positive regulation of cell cycle arrest alpha-Chlorohydrin results in increased positive regulation of cell cycle arrest 1: Homo sapiens HEK293 Cells
3 genes: CDKN2A | ID2 | TP53
1
31. alpha-Chlorohydrin positive regulation of reactive oxygen species biosynthetic process alpha-Chlorohydrin results in increased positive regulation of reactive oxygen species biosynthetic process 1: Homo sapiens HEK293 Cells
5 genes: CD36 | CYBA | IL4 | PARK7 | TLR6
2
32. alpha-Chlorohydrin positive regulation of extrinsic apoptotic signaling pathway alpha-Chlorohydrin results in increased positive regulation of extrinsic apoptotic signaling pathway 1: Homo sapiens HEK293 Cells
6 genes: BID | CASP8 | FAS | PDIA3 | PTPRC | PYCARD
1
33. alpha-Chlorohydrin maintenance of permeability of blood-brain barrier alpha-Chlorohydrin results in decreased maintenance of permeability of blood-brain barrier 1: Rattus norvegicus Blood-Brain Barrier 1 gene: PTGS1 1
34. alpha-Chlorohydrin positive regulation of cell death alpha-Chlorohydrin results in increased positive regulation of cell death 1: Rattus norvegicus Inferior Colliculi | Astrocytes
10 genes: AIFM1 | CD36 | DUSP6 | EGR1 | FAS | GZMB | HP | IL1B | LRP1 | PHB
1
35. alpha-Chlorohydrin positive regulation of mitochondrial membrane potential alpha-Chlorohydrin results in decreased positive regulation of mitochondrial membrane potential 1: Homo sapiens HEK293 Cells
3 genes: BID | CTNS | MYC
1
36. capryol propylene glycol monocaprylate L-aspartate:2-oxoglutarate aminotransferase activity capryol propylene glycol monocaprylate results in increased L-aspartate:2-oxoglutarate aminotransferase activity 1: Rattus norvegicus Plasma   1
37. capryol propylene glycol monocaprylate glutamate dehydrogenase (NADP+) activity capryol propylene glycol monocaprylate results in increased glutamate dehydrogenase (NADP+) activity 1: Rattus norvegicus Plasma   1
38. Chloramphenicol regulation of heart rate Chloramphenicol results in decreased regulation of heart rate 1: Canis lupus familiaris Cardiovascular System   1
39. Chloramphenicol positive regulation of oxidative phosphorylation Chloramphenicol results in decreased positive regulation of oxidative phosphorylation 1: Homo sapiens Fibroblasts | Cells, Cultured   1
40. Chloramphenicol apoptotic process Mitomycin Chloramphenicol inhibits the reaction [Mitomycin results in increased apoptotic process] 1: Homo sapiens Hep G2 Cells
4 genes: CASP3 | CDKN2A | FASLG | PARP1
1
41. Chloramphenicol cell death 9-cis-retinal | cellular response to high light intensity Chloramphenicol inhibits the reaction [[9-cis-retinal results in increased cellular response to high light intensity] which results in increased cell death] 1: Mus musculus Photoreceptor Cells | Cell Line   1
42. Chloramphenicol heme oxidation Dapsone | Ferrous Compounds Chloramphenicol inhibits the reaction [[Dapsone results in increased oxidation of Ferrous Compounds] which results in increased heme oxidation] 1: Homo sapiens Erythrocytes   1
43. Chloramphenicol androgen metabolic process Hydroxytestosterones | Phenytoin Chloramphenicol inhibits the reaction [[Phenytoin results in increased androgen metabolic process] which results in increased abundance of Hydroxytestosterones] 1: Mus musculus Brain | Microsomes
2 genes: CYP3A4 | ESR1
1
44. Chloramphenicol response to oxidative stress Chloramphenicol results in increased response to oxidative stress 1: Homo sapiens Neutrophils
5 genes: CAT | COX1 | PTGS2 | RRM2B | TFAM
1
45. Chloramphenicol cellular response to high light intensity 9-cis-retinal | cell death Chloramphenicol inhibits the reaction [[9-cis-retinal results in increased cellular response to high light intensity] which results in increased cell death] 1: Mus musculus Photoreceptor Cells | Cell Line   1
46. Chloramphenicol apoptotic process FASLG [Chloramphenicol results in decreased expression of FASLG] which results in decreased apoptotic process 1: Mus musculus T-Lymphocytes
4 genes: CASP3 | CDKN2A | FASLG | PARP1
1
47. Chloramphenicol androgen metabolic process Phenytoin | Testosterone Chloramphenicol inhibits the reaction [[Phenytoin results in increased androgen metabolic process] which results in increased hydroxylation of Testosterone] 1: Mus musculus Liver
2 genes: CYP3A4 | ESR1
1
48. Chloramphenicol detection of oxidative stress Chloramphenicol results in increased detection of oxidative stress 1: Rattus norvegicus Liver   1
49. Chloramphenicol apoptotic process Mitomycin Chloramphenicol inhibits the reaction [Mitomycin results in increased apoptotic process] 1: Homo sapiens Lung | Cell Line, Tumor
4 genes: CASP3 | CDKN2A | FASLG | PARP1
1
50. Chloramphenicol androgen metabolic process Phenytoin | Testosterone Chloramphenicol inhibits the reaction [[Phenytoin results in increased androgen metabolic process] which results in increased hydroxylation of Testosterone] 1: Mus musculus Brain | Microsomes
2 genes: CYP3A4 | ESR1
1
1–50 of 117 results.